Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 110(3): 632-641, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38134965

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a pervasive environmental toxicant used in the manufacturing of numerous consumer products, medical supplies, and building materials. DEHP is metabolized to mono(2-ethylhexyl) phthalate (MEHP). MEHP is an endocrine disruptor that adversely affects folliculogenesis and steroidogenesis in the ovary, but its mechanism of action is not fully understood. Thus, we tested the hypothesis that the aryl hydrocarbon receptor (AHR) plays a functional role in MEHP-mediated disruption of folliculogenesis and steroidogenesis. CD-1 mouse antral follicles were isolated and cultured with MEHP (0-400 µM) in the presence or absence of the AHR antagonist CH223191 (1 µM). MEHP treatment reduced follicle growth over a 96-h period, and this effect was partially rescued by co-culture with CH223191. MEHP exposure alone increased expression of known AHR targets, cytochrome P450 (CYP) enzymes Cyp1a1 and Cyp1b1, and this induction was blocked by CH223191. MEHP reduced media concentrations of estrone and estradiol compared to control. This effect was mitigated by co-culture with CH223191. Moreover, MEHP reduced the expression of the estrogen-sensitive genes progesterone receptor (Pgr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr) and co-treatment with CH223191 blocked this effect. Collectively, these data indicate that MEHP activates the AHR to impair follicle growth and reduce estrogen production and signaling in ovarian antral follicles.


Assuntos
Compostos Azo , Dietilexilftalato , Dietilexilftalato/análogos & derivados , Ácidos Ftálicos , Pirazóis , Camundongos , Animais , Feminino , Dietilexilftalato/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Estrogênios
2.
PNAS Nexus ; 2(7): pgad215, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37416873

RESUMO

During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1-null mouse model (Runx1d/d) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1d/d mice exhibited severely compromised decidual angiogenesis and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed that Runx1 controls the expression of insulin-like growth factor (IGF) 2 and IGF-binding protein 4 (IGFBP4) during early pregnancy. While Runx1 deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGFBP4, which regulates the bioavailability of IGFs, thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development.

3.
Inhal Toxicol ; : 1-18, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075037

RESUMO

Important differences in health that are closely linked with social disadvantage exist within and between countries. According to the World Health Organization, life expectancy and good health continue to increase in many parts of the world, but fail to improve in other parts of the world, indicating that differences in life expectancy and health arise due to the circumstances in which people grow, live, work, and age, and the systems put in place to deal with illness. Marginalized communities experience higher rates of certain diseases and more deaths compared to the general population, indicating a profound disparity in health status. Although several factors place marginalized communities at high risk for poor health outcomes, one important factor is exposure to air pollutants. Marginalized communities and minorities are exposed to higher levels of air pollutants than the majority population. Interestingly, a link exists between air pollutant exposure and adverse reproductive outcomes, suggesting that marginalized communities may have increased reproductive disorders due to increased exposure to air pollutants compared to the general population. This review summarizes different studies showing that marginalized communities have higher exposure to air pollutants, the types of air pollutants present in our environment, and the associations between air pollution and adverse reproductive outcomes, focusing on marginalized communities.

4.
Toxics ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112576

RESUMO

Imidacloprid is a neonicotinoid pesticide used in large-scale agricultural systems, home gardens, and veterinary pharmaceuticals. Imidacloprid is a small molecule that is more water-soluble than other insecticides, increasing the likelihood of large-scale environmental accumulation and chronic exposure of non-targeted species. Imidacloprid can be converted to the bioactive metabolite desnitro-imidacloprid in the environment and body. Little is known about the mechanisms by which imidacloprid and desnitro-imidacloprid induce ovarian toxicity. Thus, we tested the hypothesis that imidacloprid and desnitro-imidacloprid differentially affect antral follicle growth and steroidogenesis in vitro. Antral follicles were dissected from the ovaries of CD-1 mice and cultured in media containing vehicle control or 0.2 µg/mL-200 µg/mL of imidacloprid or desnitro-imidacloprid for 96 h. Follicle morphology was monitored, and follicle size was measured every 24 h. At the end of the culture periods, media were used to quantify follicular hormone levels, and follicles were used for gene expression analysis of steroidogenic regulators, hormone receptors, and apoptotic factors. Imidacloprid did not affect follicle growth or morphology compared to the control. Desnitro-imidacloprid inhibited follicle growth and caused follicles to rupture in culture compared to the control. Imidacloprid increased progesterone, whereas desnitro-imidacloprid decreased testosterone and progesterone compared to the control. Desnitro-imidacloprid also changed estradiol compared to the control. At 48 h, IMI decreased the expression of Star, Cyp17a1, Hsd17b1, Cyp19a1, and Esr2 and increased the expression of Cyp11a1, Cyp19a1, Bax, and Bcl2 compared to the control. IMI also changed the expression of Esr1 compared to the control. At 48 h, DNI decreased the expression of Cyp11a1, Cyp17a1, Hsd3b1, Cyp19a1, and Esr1 and increased the expression of Cyp11a1, Hsd3b1, and Bax compared to the control. At 72 h of culture, IMI significantly decreased the expression of Cyp19a1 and increased the expression of Star and Hsd17b1 compared to the control. At 72 h, DNI significantly decreased the expression of Cyp11a1, Cyp17a1, Hsd3b1, and Bax and increased the expression of Esr1 and Esr2. At 96 h, IMI decreased the expression of Hsd3b1, Cyp19a1, Esr1, Bax, and Bcl2 compared to the control. At 96 h, DNI decreased the expression of Cyp17a1, Bax, and Bcl2 and increased the expression of Cyp11a1, Hsd3b1, and Bax compared to the control. Together, these data suggest mouse antral follicles are targets of neonicotinoid toxicity, and the mechanisms of toxicity differ between parent compounds and metabolites.

5.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993295

RESUMO

During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1 -null mouse model ( Runx1 d/d ) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1 d/d mice exhibited severely compromised decidual angiogenesis, and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1 d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed a critical role of Runx1 in controlling insulin-like growth factor (IGF) signaling at the maternal-fetal interface. While Runx1-deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGF-binding protein 4 (IGFBP4), which regulates the bioavailability of IGFs thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1 d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development. Significance: A clear understanding of the maternal pathways that ensure coordination of uterine differentiation and angiogenesis with embryonic growth during the critical early stages of placenta formation still eludes us. The present study reveals that the transcription factor Runx1 controls a set of molecular, cellular, and integrative mechanisms that mediate maternal adaptive responses controlling uterine angiogenesis, trophoblast differentiation, and resultant uterine vascular remodeling, which are essential steps during placenta development.

6.
7.
Toxics ; 10(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35622664

RESUMO

The female reproductive system is dependent upon the health of the ovaries. The ovaries are responsible for regulating reproduction and endocrine function. Throughout a female's reproductive lifespan, the ovaries undergo continual structural changes that are crucial for the maturation of ovarian follicles and the production of sex steroid hormones. Phthalates are known to target the ovaries at critical time points and to disrupt normal reproductive function. The US population is constantly exposed to measurable levels of phthalates. Phthalates can also pass placental barriers and affect the developing offspring. Phthalates are frequently prevalent as mixtures; however, most previous studies have focused on the effects of single phthalates on the ovary and female reproduction. Thus, the effects of exposure to phthalate mixtures on ovarian function and the female reproductive system remain unclear. Following a brief introduction to the ovary and its major roles, this review covers what is currently known about the effects of phthalate mixtures on the ovary, focusing primarily on their effects on folliculogenesis and steroidogenesis. Furthermore, this review focuses on the effects of phthalate mixtures on female reproductive outcomes. Finally, this review emphasizes the need for future research on the effects of environmentally relevant phthalate mixtures on the ovary and female reproduction.

8.
Reprod Toxicol ; 110: 113-123, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421560

RESUMO

Widespread use of phthalates as solvents and plasticizers leads to everyday human exposure. The mechanisms by which phthalate metabolites act as ovarian toxicants are not fully understood. Thus, this study tested the hypothesis that the phthalate metabolites monononyl phthalate (MNP), monoisononyl phthalate (MiNP), mono(2-ethylhexyl) phthalate (MEHP), monobenzyl phthalate (MBzP), monobutyl phthalate (MBP), monoisobutyl phthalate (MiBP), and monoethyl phthalate (MEP) act through peroxisome proliferator-activated receptors (PPARs) in mouse granulosa cells. Primary granulosa cells were isolated from CD-1 mice and cultured with vehicle control (dimethyl sulfoxide) or MNP, MiNP, MEHP, MBzP, MBP, MiBP, or MEP (0.4-400 µM) for 24 h. Following culture, qPCR was performed for known PPAR targets, Fabp4 and Cd36. Treatment with the phthalate metabolites led to significant changes in Fabp4 and Cd36 expression relative to control in dose-dependent or nonmonotonic fashion. Primary granulosa cell cultures were also transfected with a DNA plasmid containing luciferase expressed under the control of a consensus PPAR response element. MNP, MiNP, MEHP, and MBzP caused dose-dependent changes in expression of luciferase, indicating the presence of functional endogenous PPAR receptors in the granulosa cells that respond to phthalate metabolites. The effects of phthalate metabolites on PPAR target genes were inhibited in most of the cultures by co-treatment with the PPAR-γ inhibitor, T0070907, or with the PPAR-α inhibitor, GW6471. Collectively, these data suggest that some phthalate metabolites may act through endogenous PPAR nuclear receptors in the ovary and that the differing structures of the phthalates result in different levels of activity.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Animais , Exposição Ambiental/análise , Poluentes Ambientais/análise , Feminino , Camundongos , Ovário/metabolismo , PPAR alfa/genética , PPAR gama/genética , Ácidos Ftálicos/análise , Plastificantes/toxicidade
9.
Curr Environ Health Rep ; 9(1): 53-79, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35103957

RESUMO

PURPOSE OF REVIEW: Menopause marks the end of a woman's reproductive lifetime. On average, natural menopause occurs at 51 years of age. However, some women report an earlier age of menopause than the national average. This can be problematic for women who delay starting a family. Moreover, early onset of menopause is associated with increased risk of cardiovascular disease, depression, osteoporosis, and premature death. This review investigates associations between exposure to endocrine-disrupting chemicals (EDCs) and earlier onset of menopause. RECENT FINDINGS: Recent data suggest exposure to certain EDCs may accelerate reproductive aging and contribute to earlier onset of menopause. Human and rodent-based studies identify positive associations between exposure to certain EDCs/environmental contaminants and reproductive aging, earlier onset of menopause, and occurrence of vasomotor symptoms. These findings increase our understanding of the detrimental effects of EDCs on female reproduction and will help lead to the development of strategies for the treatment/prevention of EDC-induced reproductive aging.


Assuntos
Disruptores Endócrinos , Reprodução , Envelhecimento , Disruptores Endócrinos/toxicidade , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Menopausa
10.
Adv Pharmacol ; 92: 151-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34452686

RESUMO

This chapter covers the known effects of endocrine disrupting chemicals (EDCs) on reproductive disorders. The EDCs represented are highly studied, including plasticizers (bisphenols and phthalates), chemicals in personal care products (parabens), persistent environmental contaminants (polychlorinated biphenyls), and chemicals in pesticides or herbicides. Both female and male reproductive disorders are reviewed in the chapter. Female disorders include infertility/subfertility, irregular reproductive cycles, early menopause, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and uterine fibroids. Male disorders include infertility/subfertility, cryptorchidism, and hypospadias. Findings from both human and animal studies are represented.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Animais , Disruptores Endócrinos/toxicidade , Exposição Ambiental , Feminino , Humanos , Masculino , Modelos Animais
11.
Curr Opin Endocr Metab Res ; 18: 35-47, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997465

RESUMO

Endocrine disrupting chemicals pose a threat to health and reproduction. Plasticizers such as phthalates and bisphenols are particularly problematic because they are present in many consumer products and exposure can begin in utero and continue throughout the lifetime of the individual. Evidence suggests that these chemicals can have ancestral and transgenerational effects, making them a huge public health concern for the reproductive health of current and future generations. Studies performed in rodents or using rodent- or human-derived tissues have been critical for understanding the toxic effects of plasticizers on the ovary and their mechanisms of action. This review addresses current in vitro and rodent-based in vivo studies investigating the effects of bisphenols and phthalates on ovarian health, female reproduction, and correlations between human exposure and reproductive pathologies.

12.
Endocrinology ; 161(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31748790

RESUMO

Decidualization, the process by which fibroblastic human endometrial stromal cells (HESC) differentiate into secretory decidual cells, is a critical event during the establishment of pregnancy. It is dependent on the steroid hormone progesterone acting through the nuclear progesterone receptor (PR). Previously, we identified insulin receptor substrate 2 (IRS2) as a factor that is directly regulated by PR during decidualization. IRS2 is an adaptor protein that functionally links receptor tyrosine kinases, such as insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R), and their downstream effectors. IRS2 expression was induced in HESC during in vitro decidualization and siRNA-mediated downregulation of IRS2 transcripts resulted in attenuation of this process. Further use of siRNAs targeted to IR or IGF1R transcripts showed that downregulation of IR, but not IGF1R, led to impaired decidualization. Loss of IRS2 transcripts in HESC suppressed phosphorylation of both ERK1/2 and AKT, downstream effectors of insulin signaling, which mediate gene expression associated with decidualization and regulate glucose uptake. Indeed, downregulation of IRS2 resulted in reduced expression and membrane localization of the glucose transporters GLUT1 and GLUT4, resulting in lowered glucose uptake during stromal decidualization. Collectively, these data suggest that the PR-regulated expression of IRS2 is necessary for proper insulin signaling for controlling gene expression and glucose utilization, which critically support the decidualization process to facilitate pregnancy. This study provides new insight into the mechanisms by which steroid hormone signaling intersects with insulin signaling in the uterus during decidualization, which has important implications for pregnancy complications associated with insulin resistance and infertility.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Decídua/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Progesterona/farmacologia , Diferenciação Celular/genética , Células Cultivadas , Decídua/citologia , Decídua/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Fosforilação/efeitos dos fármacos , Gravidez , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Útero/citologia , Útero/metabolismo
13.
Mol Cell Endocrinol ; 502: 110680, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31838026

RESUMO

Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.


Assuntos
Agroquímicos/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
14.
Endocrinology ; 160(5): 1234-1246, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892605

RESUMO

Uterine epithelial proliferation is regulated in a paracrine manner by a complex interplay between estrogen (E) and progesterone (P) signaling, in which E stimulates proliferation and P inhibits it. Perturbation of steroid hormone signaling within the uterine milieu could contribute to the development of endometrial hyperplasia and cancer. It is well established that bisphenol-A (BPA) is an endocrine-disrupting chemical with weak estrogenic effects, although little is known about how it affects steroid hormone signaling in the adult uterus. Because BPA acts as a weak E, we hypothesized that chronic exposure to BPA would create an imbalance between E and P signaling and cause changes in the uterus, such as aberrant epithelial proliferation. Indeed, exposure to an environmentally relevant dose of BPA had a uterotrophic affect. BPA-treated mice showed increased proliferation, notably in the glandular epithelium, which are sites of origin for endometrial hyperplasia and cancer. Increased proliferation appeared to be mediated through a similar mechanism as E-induced proliferation, via activation of the fibroblast growth factor receptor pathway and phosphorylation of the ERK1/2 mitogen-activated protein kinases in the epithelium. Interestingly, BPA reduced expression of heart and neural crest derivatives expressed 2 (HAND2), a known mediator of the antiproliferative effects of P. BPA also increased methylation of a CpG island in the Hand2 gene promoter, suggesting that BPA may promote epithelial proliferation through epigenetic silencing of antiproliferative factors like HAND2. Collectively, these findings establish that chronic exposure to BPA impairs steroid hormone signaling in the mouse uterus, and may contribute to the pathogenesis of uterine hyperplasia and cancer.


Assuntos
Compostos Benzidrílicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Proliferação de Células/genética , Disruptores Endócrinos/farmacologia , Hiperplasia Endometrial/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Estrogênios/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Progesterona/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Útero/metabolismo , Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...